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Analysis with Real Load Data

5.1

Introduction

Much of the early literature on electricity load forecasting models is
summarized in Bunn and Farmer (1985) and the references therein. More recent
developments have typically focused on highly structured, larger scale, models
whose fitting, calibration and forecasting procedures are computationally
intensive, and have taken advantage of the exponential growth in computing
power that has occurred over the last two decades. A key consideration in all these
models is how best to capture the diverse time scales, from half-hourly through to
years, present in the data.

Two broad classes of conceptual models have emerged which address

these time scales issues in different ways. These are:

(i) univariate times series models with components such as trend, annual, weekly
and daily periodicity, exogenous variables such as temperature and special
treatment for holidays, among others, where these components are all defined on a
half-hourly or hourly time scale depending on the series. Examples of univariate
time series models are given in Harvey and Koopman (1993), Bruce et al (1994),
Smith (2000), Lunney (2001), Amjady (2001), Nowicka-Zagrajek and Weron
(2002), Huang (2003), Taylor (2003), Taylor and Buizza (2003), Hamadi and
Soliman (2004), Huang et al (2005) and Taylor et al (2006).

(i) vector or multivariate times series models that organize the data into daily (or
weekly) vectors of half-hourly or hourly loads; the vector model operates over a
daily or weekly times scale. For example, daily profiles of 48 half hourly loads
can be regarded as a vector times series with a daily times scale. Here intra-day
half hourly variation is accounted for implicitly by the cross-sectional model for

each vector, and inter-day variation is modeled explicitly using the daily time
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scale. Of course it can also include deterministic variables, temperature variables,
etc. Equally, the same data could be treated as a vector time series of weekly
loads with a weekly times index, or a univariate time series with a half-hourly
time index. Articles using this conceptual are Fiebig et al (1991), Peirson and
Henley (1994), Ramanathan, Engle and Granger (1997), Cottet and Smith (2003),
Soares and Medeiros (2005) and Soares and Souza (2006).

In principle, all vector models can be reformulated as univariate models
and vice versa. However, the different conceptual frameworks discussed above
have inevitably lead to different stochastic models being adopted for each of the
various model formulations.

Because of the strong periodicity and systematic evolution present in
electricity load time series, both univariate and vector models are highly
dependent on accurate modeling of the trends (if present) and periodic
components, using regressions or other techniques. If this is not done well, then
the resulting residuals are likely to be dominated by lack of fit, rather than by any
real dynamic error structure that may be present. Appropriate modeling of this
error structure is important for accurate parameter estimation, short-term
forecasting, and the generation of realistic sample paths for all time horizons. It is
also important, at all time horizons, for the evaluation of risk using predictive
distributions of aggregations, and other functions of future loads.

Artificial Neural Networks (ANN) models have proved popular as
alternative load forecasting models and directly compete, in terms of accuracy,
with the mainly univariate and vector models cited above. However, the ANN
models are complex, difficult to understand, and are often over fitted to data.
Indeed, their structure is sufficiently opaque that it is not clear why they should
forecast so well and, as a result, the literature is still somewhat divided as to their
utility in practice. Hippert et al (2005) discuss these issues, and compare the short-
term forecasting performance of several load forecasting procedures, including
ANN models as well as univariate and vector linear models of the type discussed
above. One conclusion is that well-chosen linear models are competitive, and
sometimes better than ANN models. This was also a conclusion of Darbellay and
Slama (2000), who used formal nonlinear and linear measures of association to
compare conventional linear models with ANN models. Other articles that deals
with ANN are Khotanzad et al (1998), Alves da Silva and Moulin (2000),
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Metaxiotis, Kagiannas, Askounis and Psarras (2003), Reis and Alves da Silva
(2005), Alves da Silva and Ferreira (2007).

This thesis will concentrate on a short-term load forecasting up to 7 days
ahead or 336 half-hours ahead. The model considered is the nonlinear Smooth
Transition Periodical Autoregressive (STPAR). However, other models will be
estimated as benchmarks, they are: a simple autoregressive model, periodic
autoregressive and the STAR model. Both classes of conceptual models
(univariate and vector) are also tested. The chapter is organized as follows: section
5.2 presents the temperature and load data set used. Section 5.3 describes the
model and the modeling strategy. Section 5.4 is divided in two: the first (5.4.1)
part will report the results for specification, estimation and forecasting using the
univariate conceptual and second (5.4.2) part presents the results for the vector

conceptual.

5.2
The Data Set

In this thesis we consider a set of observations that is composed of half
hourly measurements of load and temperature from July 1, 2001 to June 30, 2005,
a total of 4 years of data or 70128 points. The observations from July 1, 2001 to
June 30, 2004 will be used as the estimation sample (in-sample) and the last year
(July 1, 2004 to June 30, 2005) will be used for forecast evaluation or out-of-
sample analysis.

The data set of load is from the state of New South Wales (NSW) in
Australia and it was kindly supplied by Integral Energy, a utility in NSW state.
NSW concentrates a total population of around 10 million people and covers
around 20% of the country. The energy consumption corresponds to 60% of the
total consumption in Australia. The temperature data set was collect in the
Bankstown Airport area in the suburbs of Sydney. Figures 23 and 24 show the
demand and temperature observations in a univariate format and figures 25, 26, 27
and 28 illustrate the half hourly loads and temperature for each half hour of the

day.
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It is well known in the literature that load time series contains a trend
component. By testing the null hypothesis of a stochastic trend (unit root) using
the Phillips-Perron Test (Phillips and Perron (1988)), the hypothesis is not
rejected with 95% level of confidence (pvaie = 0.13). As pointed out in Soares and
Medeiros (2005) the usual procedure is to take first-order differences of the load
series and doing so, has a disadvantage: when it is assumed that the process
follows a deterministic trend, it introduces a non invertible moving average
component in the data generating process that leads to estimation problems. In
addition, there won’t exist any linear autoregressive model able to capture the
dynamics of the data (for more detail see Chapter 4 of Enders (2004)). Hence,
before any modeling commences, the state load data is de-trended. A linear trend
is allowed for the load data by taking logarithms of the loads, and fitting a linear
model to the logarithms by Ordinary Least Squares (OLS). The fitted trend is
exponentiated and then subtracted from the raw load data to yield a detrended load
series. When load is being forecasted, then it is necessary to add to the prediction
the trend that was estimated and removed from the raw data series.

The last comment about the data set will consider the treatment of “special
days” such as bank holidays. One of the main goals of this thesis is to compare
methods in forecasting load series. Taylor et al (2006) argue that when
comparison of methodologies is the objective, the treatment for those days is
likely to be unhelpful because the pattern of load on these days is a lot different.
Hence, univariate methods are likely to generate poor forecast for these days.
Therefore, data from these days shouldn’t be considered. From another point of
view, if the purpose for which the model was developed is to assist in the hedging
of electricity prices, “special days” are not likely to be a material issue in hedging
electricity prices, as loads are invariably smaller on “special days” than on normal
days. “Special days” do not drive hedging policy or practice. Thus the treatment
for a holiday in this paper will be deleting the data from that day and include the
simple mean of the data from the same day one week before and one week later.

By looking at figure 23 one concludes that there is a trend as a component
of the process. And the observations are volatile. Temperature follows the same
pattern as in other places of the world. The range of temperature is 0 degrees until
peaks of more than 40 degrees. Analyzing figure 25 it is easy to see that between
/0:00 and 5:00 the series is well behaved. After that it is much more volatile.
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Figure 23 — Half-hourly demand from July 1, 2001 to June 30, 2005.
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Figure 24 — Half-hourly temperature from July 1, 2001 to June 30, 2005.
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Figure 26 — Load of the last 24 half-hours from July 1, 2001 to June 30, 2005.
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Figure 28 — Temperature of the last 24 half-hours, July 1, 2001 to June 30, 2005.
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5.3
Models

As previously mentioned, the models tested are the simple linear
autoregressive (AR) model, the periodic autoregressive (PAR), the smooth
transition autoregressive (STAR) and the smooth transition periodic
autoregressive (STPAR).

To find the best model for each class, we follow the common modeling
cycle proposed in the literature, that is, in the AR context we analyze the
autocorrelation function to discover the p order; for the PAR we analyze how the
autocorrelation at lags found in the AR analysis varies for each half-hour of the
day. Figures 29, 30 and 31 show the autocorrelation for lags equal to 1, 48 and
336.
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Figure 29 — Lag 1 autocorrelation at the 48 half-hours of the day
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Figure 30 — Lag 48 autocorrelation at the 48 half-hours of the day
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Figure 31 — Lag 336 autocorrelation at the 48 half-hours of the day

The graphs show that the appealing to use the periodic model is more
evident in lags 48 and 336 because of the variation in the value of the
autocorrelation during the day. In lag 1 it seems to be more stable. However, it
will be considered periodicity in all AR terms and like in Taylor (2006) we also
considered the possibility of periodicity in the constant term.

The STAR and the STPAR follows the procedure proposed in Terasvirta
(1994) and here.

It is important to mention that temperature will be included in the analysis.
When dealing with the AR or the PAR, temperature will be considered an
explanatory variable. However, the use of temperature in the STAR and STPAR
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context will be considered as the transition variable in the logistic function. There
is a strong appeal to do that. By looking at figure 32, the relation between load
and temperature is clear. Therefore, we could say that temperature gives an
indication if the consumption of energy will be high or low and that is exactly
what the transition variable is capturing, i.e., the dynamics of changes from one
regime to another.

The forecasting model for temperature will be the same as in the analysis
of Svec and Stevenson (2006) relying heavily on the seasonal and cyclical nature
of temperature. It is approximated by two periodic functions representing the
seasonal and daily periodicity. Both are modeled as a low-order Fourier series
with a repeating step function that cycle through each half hour. For details see
Svec and Stevenson (2006).
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Figure 32 — Scatter plot between Load and Temperature
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5.4
Results

5.4.1

Univariate

First when the order of the autoregressive model was determined, the
autocorrelation function together with the AIC and BIC suggested the use of lags
1, 48 and 336. These lags were accepted to be the basis of the linearity test when
judged by the Ljung-Box statistic.

Tables 3 and 4 report the results for the linearity test when the transition
variables are load and temperature, respectively. The linearity test is rejected most
strongly at the delay equal to 1 for load and 3 for temperature.

Table 3 — P values linearity test; Different values of the delay parameter for load

Delay - Transition variable: Load
1 2 3 4 5 6
p-value 0.000 0.008 0.026 0.048 0.133 0.074

Table 4 — P values linearity test; Different values of the delay parameter for

temperature

Delay - Transition Variable: Temperature
1 2 3 4 5 6
p-value 0.032 0.009 0.001 0.051 0.016 0.102

The next step is to estimate the model and select the number of h in (30)
by using an Information Criterion, preferably the BIC. We considered periodicity
in the lags 1, 48 and 336 and in the constant term. In the analysis of both

transition variables, the selected number of Fourier forms was two.
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where (30)
=@, + Zh:iik sin(2kz(D(s)/48)) + x;, cos(2kz(D(s)/48)) + r,, sin(2k (W (s)/336)) + w,, cos(2kz(W (s)/336))

Next, we show the results for the forecasting performance (out sample
analysis) using the Mean Absolute Percentage Error (MAPE) when the transition
variable is load and temperature. Table 5 presents the results for a month and for
each day. Overall, the forecasting performance using temperature as the transition
variable is better than when using load. Other conclusions are that January and
December are the most difficult months to predict, where MAPES are higher!

Table 5 — Forecasting performance for the STPAR using MAPE — Transition

variable: Load (d=1) and Temperature (d=3) — 2 Fourier Forms — Lags: 1, 48 and

336
Transition Variable - LOAD Transitioin variable - TEMPERATURE
Forecast Horizon - Days Forecast Horizon - Days
Month 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Jan 427 455 473 459 527 596 6.39 351 4.01 451 456 487 505 554

Feb 271 367 413 422 472 453 521 211 314 314 361 481 4385 514
Mar 2.67 3.03 496 523 531 6.05 6.12 2.07 288 3.01 342 4.64 4.87 561

Apr 270 355 541 495 498 532 555 187 229 276 4.17 4.93 547 5.99
May 3.01 380 518 512 522 6.00 6.43 191 205 3.08 446 430 521 5.46
Jun 262 331 452 421 482 480 5.10 196 225 3.07 490 497 471 574
Jul 251 318 410 399 4.16 4.75 5.09 184 221 325 480 498 466 5.31

Aug 298 250 3.62 4.07 397 568 571 196 2.38 3.27 4.09 495 466 5.85
Sep 3.27 405 373 3.05 395 439 485 188 279 3.18 470 4.61 490 5.22
Oct 293 316 299 320 354 558 6.43 156 3.02 3.70 4.17 4.83 539 5.69
Nov 2.85 3.14 443 508 545 419 452 222 310 353 494 499 491 532
Dec 524 561 522 597 6.11 651 7.10 331 414 5.02 521 555 6.06 6.87

Minimum 251 250 299 3.05 354 419 452 156 205 276 342 430 466 5.14
Average 3.15 3.63 442 447 479 531 571 219 286 346 442 487 5.06 5.64
Maximum 524 561 541 597 6.11 6.51 7.10 351 414 5.02 521 555 6.06 6.87

Table 6 presents the results for the evaluation tests applied for the model
where the transition variable is temperature. There is an indication that the model

was correctly specified.
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Table 6 — Results of evaluation tests of the estimated STPAR model

Test for g-th order serial correlation No remaining
q 1 2 4 12 24 48 96 336 nonlinearity
p-value 0.56 0.38 0.61 0.72 0.44 0.21 0.47 0.51 0.77

Finally, we compare the performance of the STPAR with other models.
The AR and the PAR included temperature as an explanatory variable with a lag
of order 3. And for the STAR we have used the temperature as the transition
variable and with d = 3.

We conclude that the model seems to work better in the first, second and
third day. For the rest of the forecast horizon, the model doesn’t perform better
than the STAR although the results are not that different.
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STPAR STAR PAR

AR

Forecast Horizon - Days

Forecast Horizon - Days Forecast Horizon - Days

Forecast Horizon - Days

Month 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Jan 351 401 451 456 487 505 554 406 416 45 487 404 467 495 383 441 477 494 479 511 578 498 571 693 653 733 778 19
Feb 211 314 314 361 481 485 514 290 319 362 398 423 459 505 224 317 317 398 491 543 547 500 579 644 640 633 658 745
Mar 207 288 301 342 464 487 561 282 322 356 419 453 484 549 228 318 350 38 469 526 573 479 549 606 686 604 745 740
Apr 187 229 276 417 493 547 599 213 337 33 350 479 500 555 207 320 323 413 49 538 575 487 503 629 604 625 694 718
May 191 205 308 446 430 521 546 221 359 312 414 426 503 510 210 339 311 423 490 517 55 406 512 636 69 614 670 700
un 196 225 307 490 497 471 574 241 388 364 436 477 466 545 199 334 311 494 484 499 551 405 553 607 666 611 667 793
Jul 184 221 325 480 498 466 531 261 361 376 467 491 459 521 213 352 342 492 483 496 555 410 557 622 680 694 648 7.89
Aug 196 238 327 409 495 466 58 263 2771 346 405 466 451 5.04 228 357 342 407 470 489 58 403 551 611 600 616 68 737
Sep 188 279 318 470 461 490 522 221 389 371 457 457 474 511 239 384 359 466 460 509 531 483 498 603 691 694 666 699
Oct 15 302 370 417 48 539 569 224 379 411 410 477 516 525 291 330 383 480 489 578 58 468 557 696 681 651 625 6.69
Nov 222 310 353 494 499 491 532 292 321 38 469 470 474 497 234 321 352 484 476 552 555 472 511 665 636 603 621 619
Dec 331 414 502 521 55 606 687 413 48 508 557 507 537 593 408 469 492 501 510 587 68 521 587 68 611 681 695 714

Minimum 156 205 276 342 430 466 514 213 277 312 350 404 451 495 199 317 311 38 460 489 531 403 498 603 600 603 621 619
Average 219 286 346 442 487 506 564 278 362 382 439 461 48 52 255 357 363 453 483 529 574 461 544 641 657 647 680 727
Maximum 351 414 502 521 555 606 6.87 413 48 508 557 507 537 593 408 469 492 501 510 587 68 521 587 696 695 733 778 1.9



DBD
PUC-Rio - Certificação Digital Nº 0310438/CA


PUC-RIo - Certificagdo Digital N° 0310438/CA

48

5.4.2
Vector

In this section we will report the results for the vector conceptual, i.e., one
model for each half hour. First the order p suggested by the AIC and BIC and the
analysis of the autocorrelation function was 1 and 7. In some cases (half hour 2, 4,
6,7,8,9, 10, 11 and 12) the lag 14 was significant; however, fitting the data with
this lag the fit didn’t increase much. Thus lags 1 and 7 were considered the correct
order for all half hours.

Table 8 will present the results for the linearity test indicating the delay
parameter d chosen for the transition variable when it was load or temperature. It
also presents the number of harmonics selected using BIC as the information
criteria.

The estimated model for the STPAR was like (31), that is,

Ve =0u +uYeis +InYi s H{(Bo2 + P Y + Ve ) X F(r(s, —C)}+é,
where (31)

y =, + 3 SINQRZN(S) /) + K, COSQRTWIS)/ 7)) + 3, SIn@KY (9)/369) + 3, co5@k(Y(6)/369)

In half-hour number 1, 3, 5, 6, 7, 8, 9, 47 and 48 the null hypothesis was
not rejected in 95% confidence level. However, the nonlinear models were tested.
Another interesting point is that load was selected the transition variable in late
night and dawn. During the day, temperature was the choice. And in most half
hours, 2 harmonics is enough according to BIC. In none of the series, 5 harmonics
were picked.

Table 9 will present the MAPE results for all estimated models. As in the
univariate format, the STAR model was estimated with the same transition
variable as selected for the STPAR and again the temperature was included in the
PAR and AR model with same lag as d when the transition variable was
temperature.

Figure 33 show the graph for the estimated MAPES in the vector format. It

is just a graphical representation of table 9.
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Table 8 — Results for the linearity test and selection of the number of harmonics

Linearity Test Number of
Hour P-value Delay Transition Variable Harmonics

1 0.058 1 Load 2
2 0.048 1 Load 2
3 0.061 1 Load 2
4 0.039 1 Load 2
5 0.077 1 Load 2
6 0.134 1 Load 2
7 0.141 1 Load 2
8 0.092 1 Load 2
9 0.076 1 Load 2
10 0.049 1 Load 2
11 0.031 1 Load 2
12 0.011 1 Load 2
13 0.018 1 Temp 2
14 0.009 1 Temp 3
15 0.010 1 Temp 3
16 0.005 2 Temp 3
17 0.011 2 Temp 3
18 0.024 2 Temp 2
19 0.014 3 Temp 2
20 0.016 2 Temp 2
21 0.009 3 Temp 2
22 0.004 3 Temp 2
23 0.001 3 Temp 2
24 0.007 3 Temp 4
25 0.013 3 Temp 4
26 0.000 3 Temp 4
27 0.000 2 Temp 4
28 0.000 2 Temp 4
29 0.000 2 Temp 3
30 0.001 1 Temp 4
31 0.002 1 Temp 2
32 0.000 2 Temp 2
33 0.005 2 Temp 2
34 0.002 1 Temp 2
35 0.018 1 Temp 3
36 0.018 1 Temp 3
37 0.000 1 Temp 4
38 0.012 2 Temp 4
39 0.019 3 Temp 4
40 0.020 3 Temp 4
41 0.029 1 Load 2
42 0.031 1 Load 2
43 0.033 2 Load 2
44 0.050 1 Load 2
45 0.042 1 Load 2
46 0.031 2 Load 2
47 0.061 1 Load 2
48 0.059 1 Load 2
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Table 9 — Forecasting performance for the STPAR, STAR, PAR and AR models —

MAPE — Vector (48 models)

Hour PLSTAR STAR PAR AR
1 3.72 3.97 3.11 291
2 3.82 3.03 2.90 294
3 3.83 3.10 3.07 2.98
4 4.03 3.22 3.06 3.13
5 3.94 3.31 3.20 3.20
6 3.84 3.25 2.89 3.11
7 3.80 3.21 2.99 3.05
8 3.84 3.19 3.22 3.01
9 3.90 3.24 3.26 3.12
10 4.22 3.44 3.40 3.36
11 5.07 3.77 3.62 3.66
12 4.00 4.01 4.03 4.01
13 3.62 3.70 4.92 521
14 4.05 4.26 6.06 6.09
15 4.38 451 6.60 6.78
16 3.28 3.58 6.08 6.28
17 3.94 4.48 5.60 5.73
18 3.34 4.09 5.17 5.94
19 3.97 4.34 4.95 6.37
20 4.01 4.63 5.04 5.45
21 4.38 4.78 5.18 5.60
22 4.63 4.63 5.48 5.79
23 4.48 4.72 5.76 5.94
24 4.70 5.01 6.07 6.31
25 5.01 4.99 6.33 6.55
26 5.21 5.17 6.68 6.85
27 5.26 5.47 6.99 7.08
28 5.53 5.67 7.25 7.31
29 5.83 5.95 7.46 7.48
30 5.98 6.01 7.55 7.57
31 5.75 6.07 7.60 8.57
32 5.90 6.20 7.67 8.08
33 5.89 6.01 7.60 7.44
34 5.78 5.92 7.42 7.35
35 5.73 5.91 7.20 7.32
36 458 491 6.92 7.14
37 4.28 4.42 6.64 6.83
38 4.07 4.39 6.28 6.52
39 4.68 4.24 6.12 5.37
40 4.38 4.36 5.84 5.25
41 3.81 3.98 5.81 5.12
42 3.86 3.85 5.60 4.92
43 3.91 3.94 5.36 4.58
44 3.99 414 4.87 4.15
45 3.47 3.79 4.30 3.81
46 3.99 3.38 3.82 341
47 3.76 3.09 3.51 3.07
48 3.60 294 3.38 2.88

Minimun 3.28 2.94 2.89 2.88
Average 4.40 4.34 5.29 5.30
Maximum 5.98 6.20 7.67 8.57
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Figure 33 — Comparison of MAPES between STPAR, STAR, PAR and AR for
each half-hour of the day (vector format)

During dawn, the best choices are the linear models. After 6 am, it is clear
that the linear models (PAR and AR) perform worse than the others. And different
from other countries, it looks that to predict dawn in New South Wales State is
easier. The results for this period are quite good. The biggest MAPES for the best
model were found between 14:30 and 17:30.

As a general conclusion, comparing the MAPES from the univariate
format and the vector format, it looks that the univariate format using the STPAR
Is better than when using the vector one. A reason for that is that a possible
advantage of STPAR model is that it captures well the intra-day behavior of a
load series. And when one is dealing with 48 models, this intra-day pattern is
excluded, remaining only the weekly pattern. Therefore, more periodicity in the
time series, better the smooth transition periodic auto regressive will fit to data.
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